EPIMERISATION OF VITAMIN D₃. THE CHOLECALCIFERYL ION Mordechai Sheves and Yehuda Mazur Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel

(Received in UK 4 March 1976; accepted for publication 23 April 1976)

The study of conformational equilibria in vitamin D_3 (cholecalciferol) and related systems necessitated the preparation of their C_3 -epimers. Although C_3 -epivitamin D_3 derivatives had been previously described as intermediates in the partial and total synthesis of vitamin D_3 , our objective was their preparation by epimerization of the parent alcohol.

Solvolysis of vitamin D_3 tosylate 4 ($\underline{1b}$) in dimethylformamide in the presence of sodium 3,5-dinitrobenzoate gave a mixture which was separated into an unsaturated hydrocarbon (70%), 3,5-dinitrobenzoate (15%), formate (12%) and vitamin D_3 (3%) fractions. The 3,5-dinitrobenzoate fraction ($[\alpha]_D$ + 29° in CHCl $_3$), on basic hydrolysis gave material whose 1 H-nmr spectrum was almost superimposable with that of vitamin D_3 ($\underline{1a}$). 1,2 The only observable difference in this spectrum was a distortion of the seven line pattern assigned to H at C_3 in vitamin D_3 ($\underline{1a}$). 1,2 The fact that this material is a mixture of the C_3 -epimeric alcohols $\underline{1a}$ and $\underline{2a}$ was indicated by the europium induced shifted 1 H-nmr spectrum, in which the C_{18} -methyl and H at C_7 showed separate signals for each epimer. The paramagentically less shifted signals were identified as those of $\underline{1a}$ and the others were thus assigned to its C_3 -epimer $\underline{2a}$.

Hydrolysis of the formate fraction gave also a mixture of the C_3 -epimeric alcohols $\underline{1a}$ and $\underline{2a}$ ($[\alpha]_D+40^O$ in C_6H_6), as evidenced from their europium shifted nmr spectrum. A similar mixture of C_3 -epimeric formates $\underline{1c}$ and $\underline{2c}$ (20%) was obtained when the solvolysis of the tosylate $\underline{1b}$ was performed in dimethylformamide alone. On the other hand in the presence of sodium p-nitrobenzoate the solvolysis led to the C_3 -epimeric mixture of the p-nitroesters $\underline{1e}$ and $\underline{2e}$ (15%) which according to its $[\alpha]_D$ value (-2.5°, in CHCl_3) contained more of the inverted ester $\underline{2e}$. In addition to these, a mixture of C_3 -epimeric formates $\underline{1c}$ and $\underline{2c}$ and an unsaturated hydrocarbon fraction, in similar yield and composition to that obtained before were isolated. Treatment of vitamin D_3 ($\underline{1a}$) with triphenylphosphine and diethylazocarboxylate in tetrahydrofuran in the presence of either 3,5-dinitrobenzoic or p-nitrobenzoic acid resulted also in a mixture of the respective esters (\underline{ca} 25%) $\underline{1d}$ and $\underline{2d}$ ($\underline{[\alpha]}_D+1^O$; \underline{CHCl}_3) or $\underline{1e}$ and $\underline{2e}$ ($\underline{[\alpha]}_D-29^O$, \underline{CHCl}_3). However the more negative rotational values indicated a higher proportion of the C_3 -inverted esters than in the respective products from tosylate $\underline{1b}$ solvolysis.

The p-nitrobenzoate ester obtained in the latter reaction was recrystallized from methanol to give the pure C_3 -epiester $\underline{2e}$ mp 117-118 0 ([α] $_0$ - 44 0 , CHCl $_3$, -1 0 , benzene) the purity of which was established by the europium shifted 1 H-nmr spectrum of the hydrolysis product, the C_3 -epivitamin, $\underline{2a}$ ([α] $_0$ - 45 0 , CHCl $_3$) lacking the signals of C_{18} -methyl and H at C_7 of vitamin D_3 . The 1 H-nmr spectrum of $\underline{2a}$ was very similar to that of $\underline{1a}$, the H at C_3 appeared also as a seven line pattern, however with a larger coupling constant (J=8.2 Hz instead of J=7.6 Hz). 1,2 This similarity may be explained, considering that the C_3 -epimers $\underline{1a}$ and $\underline{2a}$ exist as a rapidly equilibrating ring A chair conformers having OH - in either axial or equatorial conformation. 1,2 We stipulate 2 that the OH-axial and OH-equatorial conformers of $\underline{1a}$ and $\underline{2a}$ respectively have identical 1 H nmr spectra and the minor differences in the coupling constants of H at C_3 are due to their different population. The larger shifts of C_{18} -methyl and of H- at C_7 in $\underline{2a}$, observed on addition of the shift reagent are consistent with their closer proximity to the europium ion in the OH-axial conformer. Using the $[\alpha]_0$ values for the epivitamin D_3 $\underline{2a}$ and its esters we have calculated the relative ratios of the C_3 -epimeric esters formed in the solvolysis reactions (Table).

The relative high proportion of configurational retention in the solvolysis reactions suggests two independent pathways for the formation of these esters. One - a displacement reaction of a S_N^2 character leading mainly to inversion $(k_S^- type)$ and the other, an assisted route, leading to a complete retention of configuration $(k_D^- type)$. We assume that the latter route involves a homoallylic cation, the cholecalciferyl ion 3. We describe it as having the positive charge unsymmetrically distributed mainly at C_3 and C_6 being thus a resonance hybride of C_3 and C_6 in methanol.

Substance	Nucleophile	Product	[α] _D	% Inversion ^a
<u>lb</u>	Na-3,5-dinitrobenzoate + dimethylformamide	1d+2d 1c+2c	+29 ⁰ (CHC13) +43 ⁰ (C ₆ H ₆)	41 ^c 33 ^e
<u>1b</u>	Na-p-nitrobenzoate + dimethylformamide	$\frac{1e+2e}{1c+2c}$	-2.5 ⁰ (CHC13) +43 ⁰ (C ₆ H ₆)	68 ^d 33 ^e
<u>1b</u>	dimethylformamide	<u>1c+2c</u>	+45 ⁰ (C ₆ H ₆)	33 ^e
<u>la</u> b	3,5-dinitrobenzoic acid	<u>1d+2d</u>	+1° (CHC1 ₃)	64 ^C
<u>1a</u> b	p-nitrobenzoic acid	le+2e	-29° (CHCl ₂)	89 ^d

Table. Comparison of percentage of inversion at ${\bf C}_3$ in vitamin ${\bf D}_3$.

^aThe error in these estimations ca. $\pm 8\%$. ^bWith diethylazocarboxylate and triphenylphosphine in tetrahydrofuran. ^CCalculated using $\left[\alpha\right]_D + 80^\circ$ and -44° (CHCl₃) for 1d and 2d respectively ^dCalculated using $\left[\alpha\right]_D + 85^\circ$ and -44° (CHCl₃) for <u>le</u> and <u>2e</u> respectively. ^eCalculated from $\left[\alpha\right]_D$ of hydrolyzed product ($\pm 40^\circ$) using $\left[\alpha\right]_D + 60^\circ$ and 0° (C_6H_6) for <u>la</u> and <u>2a</u> respectively.

Since the protic solvents favour the formation of a carbonium ion, the solvolysis of $\underline{1a}$ in ${\rm CCl}_3{\rm CH}_2{\rm OH}$ - a protic non-nucleophilic solvent, in the presence of either sodium salt of 3,5-dinitrobenzoic or p-nitrobenzoic acids gave a complete retention of configuration at ${\rm C}_3$. The purity of the resulting esters $\underline{1d}$, mp $130\text{-}131^{\circ}$ ($[\alpha]_{\rm D}$ + 80° , ${\rm CHCl}_3$) and $\underline{1e}$, mp $124\text{-}125^{\circ}$ ($[\alpha]_{\rm D}$ + 85° , ${\rm CHCl}_3$), was established by the europium induced shifted spectra of their hydrolysis products in which the signals of ${\rm C}_{18}$ -methyl and H at ${\rm C}_7$ of the epivitamin ${\rm D}_3$ were absent. Comparison of the solvolysis products of vitamin ${\rm D}_3$ triphenylphosphonium p-nitrobenzoate with those of the corresponding cholesteryl derivative reveals a weaker participation of the π -electrons in the former, leading thus to a larger proportion of the ${\rm C}_3$ inverted products. The absence of the ${\rm C}_6$ -esters among the solvolysis products of vitamin ${\rm D}_3$ may be explained by the steric inaccessibility of the ${\rm C}_6$ -position to the comparatively large aryloxy substituents.

Using triphenylphosphine, diethylazocarboxylate and p-nitrobenzoic acid in tetrahydrofuran we have also epimerized transvitamin D_3 (4a) and dihydrotachysterol (5a) to the esters 4b (mp 104-105° [α]_D - 95°, CHCl₃) and 5b (mp 100-101°, [α]_D - 141°, CHCl₃).

$$\frac{4}{a} = \beta - OH$$

$$b = \alpha - NO_2 \bigcirc - CO_2$$

We are indebted to Dr. A. Furst and Hoffman-La Roche for the gift of vitamin D_3 and to Dr. M.P. Rappoldt and Philips-Duphar for the sample of dihydrotachysterol .

References

- G.N. La Mar, and D.L. Budd, <u>J. Amer. Chem. Soc.</u>, <u>96</u>, 7314 (1974); R.M. Wing, W.H. Okamura, M.R. Pirio, S.M. Sine and A.W. Norman, <u>Science</u>, <u>186</u>, 939 (1974); R.M. Wing, W.H. Okamura, A. Rego, M.R. Pirio and A.W. Norman, <u>J. Amer. Chem. Soc.</u>, <u>97</u>, 4980 (1975).
- 2. E. Berman, Z. Luz, Y. Mazur and M. Sheves, to be published.
- 3. I.T. Harrison, R.A.A. Hurst, B. Lythgoe and D.H. Williams, J. Chem. Soc., 5176 (1960);
 H.H. Inhoffen, K. Irmscher, H. Hirschfeld, U. Stache and A. Kreutzer, Chem. Ber., 91, 2309
 (1958).
- 4. M. Sheves and Y. Mazur, J. Amer. Chem. Soc., 97, 6249 (1975).
- a. O. Mitsunobu and M. Yamada, <u>Bull. Chem. Soc. Japan</u>, <u>40</u>, 2380 (1967); O. Mitsunobu and
 M. Eguchi, <u>ibid.</u>, <u>44</u>, 3427 (1971); b. A.K. Bose, B. Lal, W.A. Hoffman and M.S. Manhas,
 Tetrahedron Letters, 1619 (1973); c. R. Aneja, A.P. Davies and J.A. Knaggs, <u>ibid.</u>, 1033 (1975)
- 6. C.J. Lancelot, D.J. Cram and P.v.R. Schleyer in "Carbonium Ions" Vol. III, G.A. Olah and P.v.R. Schleyer Ed., Wiley, New York, N.Y. 1972, pp. 1347-1483.
- 7. The formula of cyclopropylcarbinyl cation was drawn erronously in Ref. 4. The ${\rm C_6}^{-H}$ bond should be in antiparallel relationship with ${\rm C_5}^{-C}{\rm C_{10}}$ and not with ${\rm C_3}^{-C}{\rm C_5}$ bond.
- 8. The reaction of cholesterol with diethylazocarboxylate, triphenyl phosphine and p-nitrobenzoic acid results in a mixture of p-nitrobenzoates, analogous to that reported previously in reaction with benzoic acid (Ref. 5c).